7 research outputs found

    Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    Full text link
    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11\% to 5\% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions

    Unlocking Extra Value from Grid Batteries Using Advanced Models

    Full text link
    Lithium-ion batteries are increasingly being deployed in liberalised electricity systems, where their use is driven by economic optimisation in a specific market context. However, battery degradation depends strongly on operational profile, and this is particularly variable in energy trading applications. Here, we present results from a year-long experiment where pairs of batteries were cycled with profiles calculated by solving an economic optimisation problem for wholesale energy trading, including a physically-motivated degradation model as a constraint. The results confirm the conclusions of previous simulations and show that this approach can increase revenue by 20% whilst simultaneously decreasing degradation by 30% compared to existing methods. Analysis of the data shows that conventional approaches cannot increase the number of cycles a battery can manage over its lifetime, but the physics-based approach increases the lifetime both in terms of years and number of cycles, as well as the revenue per year, increasing the possible lifetime revenue by 70%. Finally, the results demonstrate the economic impact of model inaccuracies, showing that the physics-based model can reduce the discrepancy in the overall business case from 170% to 13%. There is potential to unlock significant extra performance using control engineering incorporating physical models of battery ageing

    Detection and Isolation of Small Faults in Lithium-Ion Batteries via the Asymptotic Local Approach

    Full text link
    This contribution presents a diagnosis scheme for batteries to detect and isolate internal faults in the form of small parameter changes. This scheme is based on an electrochemical reduced-order model of the battery, which allows the inclusion of physically meaningful faults that might affect the battery performance. The sensitivity properties of the model are analyzed. The model is then used to compute residuals based on an unscented Kalman filter. Primary residuals and a limiting covariance matrix are obtained thanks to the local approach, allowing for fault detection and isolation by chi-squared statistical tests. Results show that faults resulting in limited 0.15% capacity and 0.004% power fade can be effectively detected by the local approach. The algorithm is also able to correctly isolate faults related with sensitive parameters, whereas parameters with low sensitivity or linearly correlated are more difficult to precise.Comment: 8 pages, 2 figures, 3 tables, conferenc

    Oxford energy trading battery degradation dataset: Data associated with paper "Unlocking Extra Value from Grid Batteries Using Advanced Models"

    No full text
    Battery degradation data for energy trading with physical models contains data collected from a year-long experiment where six lithium-ion cells were following current profiles corresponding to real-world usage profiles. The profiles were designed for grid-connected batteries trading power on the day-ahead wholesale market. The data set contains monthly capacity measurements as well as measurements of current, voltage and temperature while the cells were being cycled. See Readme.txt for a full description of the data and the licence under which it is made available

    Spectral_li-ion_SPM: Initial release

    No full text
    Spectral li-ion SPM is a MATLAB code that solves the so-called lithium-ion battery Single Particle Model (SPM) using spectral numerical methods
    corecore